دانلود پایان نامه ارشد درمورد ماشین بردار پشتیبان و ویژگیهای ساختاری

جدول 3-2: ماتریس ضرایب همبستگی بین توصیفکنندههای انتخاب شده 55
جدول 3-3: آنیون‌های متنوع به کار رفته در ساختار مایعات یونی موجود در سری داده 60
جدول 3-4: پایه‌های کاتیونی به کار رفته در سری داده 61
جدول 3-5: نتایج حاصل از مدل‌های خطی و غیر خطی 62
جدول 4-1: مقادیر پیش‌بینی شده و تجربی دمای ذوب مایعات یونی 70
جدول 4-2: ماتریس ضرایب همبستگی بین توصیف‌کننده‌های انتخاب شده 76
جدول 4-3: ضرایب و آماره‌های مدل MLR 77
جدول 4-4: نتایج حاصل از مدل‌های خطی و غیرخطی 78
فصل اول
مقدمه
کمومتریکس یا شیمی سنجی در حقیقت کاربرد علوم آمار، کامپیوتر و ریاضی در شیمی می‌باشد [1]. از روش‌های ذکر شده برای درک بهتر اطلاعات شیمیایی که در آزمایشگاه بدست می‌آید استفاده می‌شود، به این صورت که با استفاده از تحلیل داده‌های شیمیایی بدست آمده اطلاعات مفید استخراج می شود تا با توجه به این اطلاعات بتوان آزمایش‌های مورد نظر را با بازدهی بهتر طراحی کرد.کاربرد روش‌های ریاضی در شیمی سابقه دیرین دارد ولی با توجه به پیشرفت علوم کامپیوتر و کاربرد آن در علوم روش‌های کمومتریکس در دهه اخیر پیشرفت بسیار داشته است. در این دو دهه روش‌های کمومتریکس مختلفی توسط شیمیدان‌ها با کمک متخصصین علوم کامپیوتر، ریاضی و آمار ارائه شده است. بسیاری از شیمیدان‌ها و کسانی که از روش‌های کمومتریکس استفاده می‌کنند دانشمند سوئدی به نام ولدرا به عنوان اولین کسی که این روش‌ها را معرفی کرده است نام می‌برند و به او لقب پدر علم کمومتریکس را داده‌اند [2]. کمومتریکس درشاخههای مختلف شیمی مورد استفاده قرار می‌گیـرد. بـرخی از کاربردهای آن شامل کنترل فرآیندها، تجزیه و تحلیل و شناخت الگوها، پردازش علائم و بهینه کردن شرایط میباشد.  یکی از زمینههای مهم کاربرد کمومتریکس در مطالعاتی است که خواص مولکولها را به ویژگیهای ساختاری آنها نسبت میدهد. موارد خاصی از این تحقیقات و مطالعات شامل موارد رابطه‌ی کمی ساختار-فعالیت(QSAR)، رابطه‌ی کمی ساختار-سمیت(QSTR)، رابطه‌ی کمی ساختار-خصوصیت(QSPR) است که به منظور سهولت و کلی نگری تمامی این موارد تحت عنوان QSAR قرار می گیرند.
1-1) اجزای اصلی QSAR
یک رابطه ی کمی‌ساختار – فعالیت از سه بخش مجزای زیر تشکیل می‌گردد ;[3]
داده‌های معتبر مربوط به فعالیت یا ویژگی مورد مطالعه که باید مدل سازی و در نهایت پیش بینی شوند. تعدادی از خصوصیاتی که می‌توانند برای مدل سازی QSAR مورد استفاده قرار گیرند به شرح زیر می‌باشند: فعالیت دارویی، فعالیت سمی، خصوصیات فیزیکوشیمیایی و تاثیرات سموم شیمیایی در محیط زیست.
توصیف‌کننده‌ها یا همان متغیرهایی که مدل براساس آنها ساخته می‌شود. ویژگی‌های هر ملکول که معمولا با در نظر گرفتن ساختار ملکولی به صورت کمی‌محاسبه می‌شوند، در واقع همان متغیر‌های مورد استفاده در مدل سازی می‌باشند.
روشی (اعم از ریاضی یا آماری) که برای فرمول بندی مدل از آن استفاده می‌گردد.
روش‌های بسیاری جهت مدل سازی QSAR به کار می‌روند که تعدادی از آن‌ها به قرار زیر می‌باشند:
رگرسیون خطی چند تایی (MLR)، روشی ریاضی است که معمولا برای برقراری ارتباط بین ویژگیهای ساختاری مولکول و خواص آن در مطالعات QSPR/QSAR به کار میرود. این روش هنگامی که بین توصیفکنندهها برهمکنشی وجود نداشته و ارتباط آنها با فعالیت مورد نظر خطی باشد مفید است.[4]
شبکه عصبی مصنوعی (ANN)، که با تقلید از شبکههای عصبی بیولو‍ژیکی مثل مغز انسان ساخته شدهاند الگویی برای پردازش اطلاعات میباشند که بر پایه اتصال به هم پیوسته چندین واحد پردازشی عمل میکنند [5].
ماشین بردار پشتیبان (SVM)، یکی دیگر از روشهای یادگیری راهنمایی شده است که از آن برای طبقه بندی و آنالیز رگرسیون استفاده میکنند[6] .
کمترین مربعات جزیی (PLS)، این روش با روش MLR، تفاوت چندانی ندارد. تنها فرضیاتی که براساس آن ضرایب متغیرهای مدل محاسبه می‌گردند در دو روش با هم متفاوت است[7] .
این نوشته در علمی ارسال شده است. افزودن پیوند یکتا به علاقه‌مندی‌ها.