منبع مقاله c (954)

92
مارس 18, 2018 0 Comment
فهرست شکلها
عنوانشماره صفحه4-6: اختلاف پنجره ثابت در تصویر زمینه و فریم خوانده شده وتبدیل به باینری875-6: حذف عناصر اضافی از تصویر87: 6-6 به هم چسباندن اجزای گسسته شده877-6: شمارش اشیاء برچسب گذاری شده87
ل
چکیده:
دراین پایان نامه یک تکنیک موثر بر مبنای سیستمهای عصبی- فازی برای کنترل چراغهای راهنمایی و بر اساس پردازش هوشمند تصاویر ترافیکی دریافتی از دوربینهای نصب شده در یک تقـاطع ایزولـه، ارائـه شـده است. هدف از کنترل ترافیک در خیابانهای منتهی به یک تقـاطع ایزولـه آن اسـت کـه در یـک بـازه زمـانی مشخص، از ایجاد اشباع در هریک از بازوها جلوگیری کرده و همچنـین بتـوان زمـان انتظـار وسـایل نقلیـه در پشت چراغ قرمز را به حداقل رساند تا نهایتا ترافیکی روان و مطلوب، همراه بـا ایمنـی در سـطح تقـاطع ایجـاد گردد. به این منظور قوانین فازی مدل کننده تقاطع ایزوله که ساختار کنترلر فازی را تشکیل دادهاند، بر مبنـای درجه اشباع که نشان دهنده میزان تقاضا به ظرفیت هریـک از ورودیهـای تقـاطع میباشـد، طراحـی شـدهانـد.
اساس کار، بر استفاده از شبکه عصبی RBF١، به همراه یک روش پیشنهادی آموزش مبتنـی بـر فـازی خواهـد بود. در الگوریتم یادگیری 2FHLA، علاوه بر تعیین وزنهای ارتباطی بین لایه مخفـی و خروجـی، پارامترهـای لایه RBF شامل تعداد نرون، مرکز نرون و عرض آن نیز در طول فرایند آموزش تعیین میگردند. مقادیر اولیه پارامترها با استفاده از منطق فازی و روشهای خوشه یابی فازی و به کمک تکنیک 3FCM به دست مـی آینـد.
همچنین از میزان تعلق هر الگوی ورودی به خوشهها و فاصله الگو تا مرکـز هـر خوشـه جهـت محاسـبه میـزان عدم شباهت استفاده شده وسپس این فاصله مینیمم میگـردد. بـرای تعیـین مقـادیر نهـایی پارامترهـا و وزنهـای ارتباطی، از ترکیب روشهای 4LLS و گرادیان5 به عنوان روش بهینهسازی استفاده میشود. نتایج شبیهسازی بر روی بانک اطلاعاتی موجود و مقایسه نتایج کاربرد این الگوریتم با سـایر روشـهای کلاسـیک کـه در کنتـرل تقاطعهای ایزوله معمول هستند، نشان دهنده میزان قابلیت این تکنیک می باشد.
کلمات کلیدی: پردازش تصویر، تقاطع ایزوله، شبکه عصبی، کنترل ترافیک، کنترل فازی
1−Radial Basis Function 2−Fuzzy Hybrid Learning Algoritm 3−Fuzzy-C-Mean 4−Linear Least Squared 5−Gradient
1
مقدمه:
امروزه با افزایش سریع کلان شهرها و افزایش تعداد خودروها، اهمیت داشتن مدیریت ترافیک موثر و کارآمد بر کسی پوشیده نیست. تـاکنون روشـهای کنتـرل ترافیـک بیـشتر مبتنـی بـر روشـهای کنترلـی کلاسیک بوده است که با مسائلی همچون سطح پایین هوشمندی در مواجه با شرایط پیچیـده ترافیکـی و عدم مدلسازی مناسب، مواجه میباشند. در این پایان نامه سعی برآن است کـه بـا بـه کـارگیری تکنیـک آموزشی FHLA که بر مبنای شبکههای عصبی RBF و روش خوشه یابی فـازی عمـل مـینمایـد، نـوعی کنترل هوشمند برای تنظیم پارامترهای یک تقاطع ایزوله ارائه شود، به طوری کـه در نهایـت بـه کـاهش تاخیر وسایل نقلیه در عبور از تقاطع و جلوگیری از ایجاد اشباع در هر یک از ورودیهـای تقـاطع منتهـی گردد. به این منظور برای جمع آوری اطلاعات آماری از سطح تقاطع، برای ارزیابی وضعیت ترافیکی در هر لحظه، از روشهای پردازش تصاویر حاصل از دوربینهای نصب شده در تقاطع ایزوله، استفاده شده است. در این پایان نامه و در فصل اول کلیاتی راجع به روشهای مختلف کنترل ترافیک، و تحقیقات صـورت گرفتـه در این زمینه ارئه شده است. در فصل دوم به معرفی نظریه جریان کنترل ترافیـک و روابـط حـاکم بـر آن پرداخته شده است. فصل سوم به معرفی مختصری از اصول کنتـرل فـازی و برخـی از روشـهای آموزشـی شبکههای عصبی و معرفی کنترل کنندههای نرو- فازی اختصاص دارد. در فـصل چهـارم، ارائـه الگـوریتم پیشنهادی FHLA و روش پیادهسازی آن صورت میپذیرد و در فصل پنجم به بررسی روشهای اسـتخراج اطلاعات آماری ترافیک از تصاویر ویدئویی پرداخته میشود. در فصل ششم کنترلر نـرو- فـازی طراحـی و پس از شبیه سازیهای لازم در محیط برنامـه نویـسی MATLAB، تـاثیر بـه کـارگیری کنتـرل کننـده هوشمند با استفاده ازتکنیک FHLA و به کارگیری نوعی کنترل کلاسیک پیش زمانبندی شده، بر میزان سطح تاخیر و سطح اشباع ورودیهای تقاطع بررسی و مقایسه شده است.فصل هفتم نیز بـه ارائـه نتیجـه گیری وچند پیشنهاد اختصاص دارد.
2
فصل اول
کلیـات
3
فصل اول: کلیات
(1-1 هدف
امروزه با افزایش سریع کلان شهرها، افزایش تعداد خودروهـا، افـزایش بهـای سـوخت، مـساله محـیط زیست، استفاده مفید از ظرفیت جادههای موجود و…، اهمیت داشتن مدیریت ترافیک موثر و کارآمد بر کـسی پوشیده نیست.
در گذشته طراحان ترافیک تنها به نحوه حرکت وسایل نقلیه، به طـوری کـه در تقاطعهـا تـصادفی رخ ندهد، به عنوان مساله اصلی در مدیریت ترافیک توجه داشتند. امروزه مسائل عمده دیگـری نیـز مـورد توجـه میباشد که از جمله میتوان به کاهش تاخیر، کاهش توقفات، کاهش مصرف سـوخت، کـاهش طـول صـفهای پشت چراغ قرمز، حذف اثرات نویز، افزایش توجه به مسائل عابران پیاده وحرکت وسایل نقلیه سـنگین، اشـاره نمود. تاکنون روشهای کنترل ترافیک بیشتر مبتنی بر روشهای کنترلی کلاسیک بوده است. در این روشـها بـا استفاده از روشهای آماری و منحنیهای به دست آمده تجربی و نهایتا با تخمین برخی از متغیرهای مـوثر بـر ترافیک سعی بر آن است که پارامترهای مورد نظر درآن سطح خـاص کنترلـی، بـه گونـهای مطلـوب تنظـیم شود.[4]
تاکنون در جهت رفع این نیاز سیستمهای کنترل ترافیک متعددی توسط مراکز حمل ونقل کشورهای مختلف توسعه یافتهاند که تا حدی پاسخگوی نیازهای موجود بوده است. البته این حد پاسخگویی سیستمهای کلاسیک در ازای پیچیدگیهای بالای ساختار (شامل بخشهای کنترل، مخابرات و کامپیوتر) و هچنین حجـم بالای هزینههای پیاده سازی، (به علت تجهیزات به کار رفته) و نگهداری به دست آمدهاند. از دیدگاه کنترلـی، سیستمهای کلاسیک موجود از الگوریتمهای مختلف برنامه ریزی ریاضی (از جمله الگوریتمهای برنامـه ریـزی خطی صحیح و الگوریتمهای برنامه ریزی دینامیکی) استفاده میکنند که خود معمولا مشکلات متعددی مانند حجم بالای محاسباتی و مشکل پیادهسازی را به دنبال دارند. همچنین از جمله نواقص مطرح شده در کنتـرل سنتی ترافیک میتوان به مسائلی همچون برخورداری از سطح پایین هوشمندی در مواجه بـا شـرایط پیچیـده ترافیکی، عدم مدلسازی مناسب و واقع بینانه از ابهامات موجود در بحث کنتـرل ترافیـک (تعیـین پارامترهـا و مدلسازی رفتار رانندگان و عابران پیاده)، عدم وجود ویژگی خود سازماندهی، در طراحی استراتژیهای ترافیک، غیر قابل پیش بینی بودن شرایط ترافیکی حتی برای چند لحظه آینده و عدم دسترسی به جزئیات ایجاد شده مانند تعیین نوع خودرو و یا تغییرات سرعت آنها، اشاره نمود.
سیستمهای مورد بررسی در کنترل ترافیک میتوانند شامل موارد زیر باشد :[5]
-1 کنترل تقاطع ایزوله: کنترل جریان ترافیک تقاطع مجهز به چراغ بـدون در نظـر گـرفتن تـاثیر جریانهـای ترافیکی تقاطهای مجاور. .(isolated intersection control)
-2 کنترل تقاطعهای شریانی با شبکه باز: کنترل تعدادی تقاطع مجهز به چراغ وابسته به یکدیگر در طول یک شریان اصلی که وضعیت ترافیکی هریک بر تقاطع مجاور تاثیر دارد. (arterial intersection control)
-3 کنترل گسسته: کنترل روی تمام تقاطعهای مجهز به چراغ درکل شبکه شهری و یا بخشی از آن.
(areawide system control)
4
-4 کنترل ترافیک بزرگراه: کنترل روی جریان مسیرهای ورودی و مسیرهای خروجی با هدف کنترل ترافیـک روان در مسیر اصلی. (expressway control)
-5 کنترل عابران پیاده: کنترل عبور پیاده از خیابان با هدف تامین امنیت و کاهش زمان انتظـار.( pedestrian (control
اصولا سه نوع روش کنترلی برای تقاطعها مورد استفاده میباشد:
-1 کنترل زمان ثابت (fixed-time) :در این روش کنترلی، زمان تغییر چراغها از پیش تعیین شده و هیچگونه انعطافی در برابر شرایط ایجاد شده مانند وقوع تصادفات، ایجاد شـرایط خـاص مثـل تعطیلـی مـدارس، عبـور آمبولانس و… ندارد.
-2 کنترل از پیش زمانبندی شده : (pre-time control) در این نوع کنترل بر اساس الگوهای متعددی که از وضعیت یک خیابان به دست آمده است، زمانبندی چراغها صورت میپذیرد. مثلا در هر ساعت خاصی از شبانه روز مانند ساعات تعطیلی مدارس یا ساعات پیک تردد، مدت زمان سبز وقرمز بودن چراغها به گونهای متناسب تنظیم میشود، اما باز هم در برابر شرایط اضطراری غیر قابل انعطاف هستند.
-3 کنترل هوشمند : (intelligent control) در این نوع کنترل تغییر وضعیت چراغها کاملا به شرایط موجود و میزان درخواست بار ترافیکی بستگی دارد.
با مطرح شدن کنترل هوشمند در مهندسی کنترل و موفقیت این روشها در سیستمهای عملی، کاربرد روشهای کنترل هوشمند درمبحث ترافیک نیز مطرح گردیده است.
به دلیل ویژگیهای خاص سیستم کنترل ترافیک شهری و از آنجا که رفتارهای پیچیده انسان از عوامـل موثر بر شرایط ترافیکی ایجاد شونده در این سیستم میباشد، کاربرد روشهای هوشمند کنترل به جای روشهای سنتی ضروری به نظر میرسد. به طور عمده مسائل اصلی در کنترل چراغ راهنمایی در یک تقاطع ایزوله توجه به کاهش تاخیر وسایل نقلیه و کاهش میزان توقفات و همچنین افزایش ظرفیت خیابانها میباشـد. در میـان ابزارهای مختلفی که برای برقراری ایمنی راه و حفظ نظام در جریان ترافیک موجود میباشد، ماننـد تابلوهـای راهنمایی، خط کشی ها، و سایر ابزار و وسایل نصب شده در خیابانهـا، موجـود میباشـد، زمانبنـدی چراغهـای راهنمایی برای کمینه کردن تاخیر و افزایش ظرفیت تقاطعها در منطق کنتـرل کـاربرد فراوانـی دارد. دریـک تقاطع ایزوله دو حالته که در این طرح مورد بررسی میباشد، تنها با دو فاز عملیاتی کار میشود، وقتی که چراغ در دو خیابان روبرو به هم سبز باشند، در دو خیابان مجاور قرمز میشود و برعکس. در یک کنترل هوشمند، بر اساس میزان درخواست ترافیکی در خیابان مورد کنترل، تغییرات چراغ و رفتن به فاز دیگر، صورت میگیـرد و مدت زمان مناسب برای سبز بودن یک چراغ تعیین میشود.
با توجه به قابلیتهای متنوع روشهای هوشمند (شامل هوش مصنوعی , منطق فازی و شبکه عصبی)، به ویژه در پوشش دهی و پاسخگویی مناسب به موارد فوق، پیشنهاد استفاده از روشهای هوشمند، جهت پوشش دهی مشکلات فعلی، به عنوان یک راه حل جدید مطلوب خواهد بود. با توجه بـه قابلیتهـای متنـوع روشـهای هوشمند انتظار میرود که روشهای فوق در حوزههای مختلف کنترل ترافیک شامل بـرآورد وتعبیـر و پـردازش اطلاعات مختلف جمع آوری شده، برخورد و مدلسازی مناسب پارامترها و شـرایط مـبهم موجـود در پروسـه کنترل، پیشگویی آینده، افزایش قدرت یادگیری سیستم و بالاخره افزایش هوشمندی سیستم، بسیار پر کاربرد بوده و نتایج قابل قبولی را به دنبال خواهد داشت.
5
در این پروژه پس از شناخت و تحلیل روابط حاکم بر متغیرهای ترافیکی، درجه اشباع هـر ورودی کـه نشان دهنده نسبت میزان درخواست بار ترافیکی به میزان ظرفیت آن ورودی میباشد، به عنوان پارامتر ورودی کنترل کننده در نظر گرفته شده و با روشهای مبتنی بر بینایی ماشین اندازه گیری میشود. کنتـرل کننـده در هر مرحله نمونه برداری و در پایان زمان سیکل جاری، وضعیت همه ورودی را ارزیابی کرده و طـول چرخـه و طول زمان سبز اختصاص داده شده به هریک از خیابانها را در مرحله بعدی تعیین میکند تـا درجـه اشـباع در همه ورودی نسبتا یکسان و در سطح مناسبی قرار بگیرد. پس از طراحی ساختار قوانین کنترل کننده براساس پارامترهای فازی، الگوریتم آموزش مربوط به شبکه عصبی اجرا میگردد.
(2-1 پیشینه تحقیق
به طو کلی نظریه کنترل ترافیک شهری از سال 1950 ارائه گردید. بخش عمدهای از روشهایی کـه تـا کنون ارائه شدهاند براساس روشهای کلاسیک و مبتنی بر اطلاعات آماری و منحنیهای به دست آمده تجربـی میباشد. در زمینه کنترل زمان ثابت در یک تقاطع ایزوله ،Webster، در سال 1958 رابطهای ریاضـی را بـرای کنترل بهینه چرخه ارائه داد. پس از آن روشهای کنترلی دیگری نیز بر اساس مدل بهینهسازی ریاضی توسـط Miller در سال 1963، Bang درسال 1976، و Davidsson در سال 1996، ارائه گردید.[5]
به طور همزمان، با معرفی تئوری فازی در سال 1965توسط دکتر زاده کـاربرد ایـن نظریـه در کنتـرل ترافیک تقاطعها آغازشد. نخستین کنترلر فازی توسط Pappis و Mamdani در سال 1974 با کاربرد مقدماتی منطق فازی برای یک تقاطع مستقل بـا خیابانهـای یـک طرفـه، ارائـه گردیـد.[6] بـرای کنتـرل شـبکهای از تقاطعهای وابسته به یکدیگر با خیابانهای دو جهته، Chiu در سال 1992 روشی را با کاربرد منطق فازی ارائـه داد.[11] همچنین روشهایی نیز بر اساس نظریه فازی برای کنترل حجم یک معبر، کنترل تقاطعها با در نظـر گرفتن حرکات گردشی با اهداف مختلف کنترلی ارائه گردیده است. به طور رسمی پروژه 1FUSICO از سـال 1996 در دانشگاه Helsinki برای توسعه روشهای کنترل فازی چراغهای یـک تقـاطع آغـاز شـده اسـت کـه تاکنون نیز این تحقیقات ادامه دارد.
از جمله سیستمهای کنترلی طراحی شده میتوان به سیستم 2UTCS اشاره نمود که از حدود سـالهای
1970 رواج یافته و تا به امروز با آنکه تغییرات و پیشرفتهای وسیعی روی آن صورت گرفتـه، بـاز هـم مبنـای بسیاری از سیستمهای کنترل زمانبندی شده میباشد .این سیستم یک برنامه زمانبنـدی خـارج از خـط بـر اساس میانگین شرایط ترافیکی برای یک دوره زمانی خاص از طول روز در کامپیوتر مرکزی ارائـه میدهـد کـه معمولا بر اساس به حداقل رساندن شاخص بی نظمی که نشان دهنده میزان تاخیر وتوقف و یا ماکزیمم کردن ظرفیت باند میباشد، عمـل میکنـد. UTCS مجموعـهای از الگـوریتم هـایی میباشـد کـه تحـت پارامترهـای
3FHWA استاندارد شده است و امروزه با کاربرد مدلسازی میکروسکوپی، استانداردهای دیگـری نیـز عملکـرد این سیستم را توصیف میکنند8] ،.[7
1−Fuzzy Signal Control 2−Urban Traffic Control System 3−Federal Highway Administration
6
با ایجاد قابلیت کاربرد میکروپروسسورها که استفاده از آنها نیـز سـاده و کـم هزینـه میباشـد، چنـدین سیستم کنترل ترافیک روی خط1 از اواخر دهه70 و اوایل دهه80 در جهت پاسخگویی به تغییرات ایجاد شده برای افزایش عملکرد بهینهسازی ارائه گردیده است. از جمله این سیستمها میتوان به سیـستم 2SCATS کـه در استرالیا وسیستم 3SCOOT که در انگلیس ارائه شدهاند اشاره نمود9]،.[10 در مجموع میتـوان گفـت کـه این دو سیستم در جهت افزایش بهینهسازی پارامترهایی همچون چرخه4، تسهیم5، آفست6 عمل میکننـد. در کشور ما حدودا از سال 1377 طرح کاربرد نرم افزار SCATS به مرحله اجرا در آمد و هم اکنـون حـدود 320
تقاطع شهر تهران به این سیستم مجهز شدهاند. سیستمهای دیگری نیز در سالهای اخیر مورد توجـه کـاربران قرار گرفته است که نمونه هایی از این سیستمها عبارتنـد از: سیـستم7PLIDENT، سیـستم 8EQUISAT و سیستم .9FLEXIPROG کاربرد شبکههای عصبی به عنـوان یـک روش هوشـمند در سیـستمهـای کنتـرل ترافیک در سالهای اخیر اهمیت ویژهای یافته اسـت. سیـستم 10S-TRAC توسـط Spall در سـال1997 کـه نمونهای از سیستمهای مبتنی بر شبکه عصبی میباشد، ارائه گردید. در سال1992، Dongling الگوریتمی بـه منظور کاربرد همزمان شبکههای عصبی و سیستمهای فازی برای بهبود استنتاجات فازی در کنتـرل ترافیـک ارائه داد. همچنین الگوریتم 11FDP نیز برای اصلاح سرعت محاسبات با ترکیب روشهای فازی وعصبی در سال 1998 توسط j.j.Henry ارائه شده است که کاربردهای فراوانی دارد. Liu.Zhiyong در سال 2003 یـک نـوع روش کنترلی پیشگویی کننده با استفاده از شبکههای عصبی برای کنترل چراغ در یـک شـبکه شـهری ارائـه داد.وی همچنین در سال 2005 یک نوع روش کنترلی بر اساس شبکههای عصبی هاپفیلد و مبتنی بر تئوری آشوب12 برای کنترل یک تقاطع ایزوله پیـشنهاد داد. Guojiang نیـز در سـال 2004 مطالعـاتی را در زمینـه کاربرد سیستمهای نرو- فازی در یک شبکه ترافیکی شامل چندین تقاطع انجام داد12]،.[11
به طور کلی سیستمهای عصبی به شکلهای مختلفی در کنترل ترافیک به کار گرفته شدهاند. در برخی موارد شبکه عصبی به تنهایی مدلسازی، آموزش و کنترل سیستم ترافیکی مورد نظر را انجام میدهد. همچنین ممکن است شبکه عصبی بر مبنای سایر روشهای کنترلی به کار رود، ماننـد بـه کـارگیری شـبکه عـصبی بـه منظور اصلاح وبهبود تصمیمات کنترلر فازی ترافیک.در برخی موارد نیز برای کنترل ترافیـک، شـبکه عـصبی میتواندبا سایر روشهای کنترلی مانند کنترل فازی، کنترل پیشبین و…ترکیب و قابلیتهای آنها را بهبود بخشد.
1−On-Line 2−Sydney Coordinated Adaptive Traffic System 3−Split Cycle Offset Optimision Technique 4−Cycle Time 5−Phase Split 6−Offset
7−Platoon Identification 8−Equal Saturation 9−Flixible Progressive Linking of Vehicle Actuated Signals
10−System Wide Trrafic adaptive control 11−Fuzzy Dynamic Programming 12−chaos
7
(3-1 روش کار و تحقیق
جمع آوری اطلاعات آماری به روشهای مختلف و با استفاده از انواع حسگرها صورت میپذیرد که برخی از آنها به شرح زیر میباشد:[2]
-1حسگرهای مکانیکی مانند آشکار سازهای هیدرولیکی یا پیزوالکتریکی.
-2آشکارسازهای آلتراسونیک و حسگرهای مادون قرمز که با ارسال امواج به سطح خیابان و مقایـسه اخـتلاف زمان بین امواج منعکس شده از سطح وسایل نقلیه و سطح خیابان، وسیله نقلیه را تشخیص میدهد. -3کاربرد رادار که با استفاده از تغییرات ایجاد شده در فرکانس امواج منتشره از سطح خودروها، سرعت آنها را تشخیص میدهد.
-4حلقههای آشکار ساز مغناطیسی و حلقههای اندوکتانس که بر اساس تشخیص تغییرات انرژی در اثر وجـود خودرو کار میکند.
-5حسگرهای تشخیص نور مانند دوربین ویدئویی و چشم الکترونیکی.
نصب یک دوربین از نصب سایر آشکارسازها بسیار ساده تر بوده و علاوه بر آن یک دوربـین بـه تنهـایی میتوان وضعیت محدوده وسیعی را زیر نظر داشته و اطلاعات آماری دقیق تر و با جزئیات قابل درک بیـشتری را در اختیار کنترلر قرار دهد و به طور کلی یک سیستم آشکارساز مبتنی بربینـایی، میتوانـد کنترلـی مـشابه کنترل یک انسان را فراهم نماید.
هدف از کنترل یک تقاطع ایزوله در این پایان نامه، بهبود وضعیت ترافیکی و ایجاد روانی نسبی حرکت در تمام مسیرهای منتهی به این تقاطع، در ساعات مختلف شبانه روز میباشد. برای رسیدن به ایـن هـدف، از حسگرهای ویدئویی برای جمع آوری اطلاعات آماری تقاطع و ازیک الگوریتم فـازی – عـصبی اسـتفاده شـده است. یکی از مهمترین پارامترهایی که در بازدهی شبکههای عصبی و بهویژه شبکههـای عـصبی RBF نقـش مهمی را ایفا مینماید، الگوریتم یادگیری و دقت آن میباشد. شبکههای RBF یکی از انواع شبکههای عـصبی جلوسو میباشندکه در بسیاری از کاربردهای مهندسی جذابیت و کاربرد گستردهای دارند. وجود این ویژگی را میتوان در عوامل متعددی جستجو نموداز جمله اینکه شبکههای RBF میتوانند تقریباً کلیه توابع عمـومی را تخمین بزنند، ساختار بسیار ساده و فشردهای دارند و سرعت الگوریتم آموزشی آنها سـریع مـیباشـد. در ایـن پروژه و برای اولین بار یک الگوریتم آموزشی برای شبکههای عصبی RBF مبتنی بـر منطـق فـازی و ترکیـب روشهای LLS و گرادیان با حفظ کاربری آن برای کنترل یک تقاطع ایزوله ارائه مـی گـردد. روش پیـشنهادی
FHLA برای طراحی و آموزش شبکه عصبی RBF شامل دو مرحله میباشد: -1 طراحی ساختار شبکه RBF و مقداردهی اولیه به پارامترهای آن.
-2 تنظیم پارامترهای شبکه براساس الگوهای آموزشی.
اساس کار، بر استفاده از شبکه عصبی فازی RBF به همراه یک روش پیـشنهادی آمـوزش مبتنـی بـر فازی خواهد بود. در الگوریتم یادگیری FHLA پیشنهادی، علاوه بر تعیین وزنهای ارتباطی بین لایه مخفـی و لایه خروجی، پارامترهای لایه RBF شامل تعداد نرون، مرکز نرون و عرض آن نیـز در طـول فراینـد آمـوزش تعیین میگردند. مقادیر اولیه پارامترها با استفاده از منطق فازی و روشـهای خوشـه یـابی فـازی و بـه کمـک تکنیک FCM بدست میآیند. در این روش تابع هزینه عدم شباهت، محاسبه و مینـیمم مـیگـردد. از میـزان
8
تعلق هر الگوی ورودی به خوشهها و فاصله الگو تا مراکز خوشه جهت محاسبه میـزان عـدم شـباهت اسـتفاده میگردد. برای تعیین مقادیر نهایی پارامترها و وزنهای ارتباطی، از ترکیب روش LLS و گرادیان به عنوان روش بهینهسازی استفاده میشود.
یک سیستم کنترلی مبتنی بر بینایی ماشین، شامل یک دوربین دیجیتـالی اسـت کـه بـر روی مـسیر حرکت خودروها نصب شده فیلم حاصل از آن توسط الگوریتمهای پردازشی مناسـب بـرای تـشخیص خـودرو استفاده میشود و نهایتا اطلاعات آماری لازم از آن استخراج میگردد.
بنابراین با ترکیب دو ابزار قدرتمند شبکههای عـصبی و سیـستمهـای فـازی همـراه بـا یـک سیـستم آشکارساز مبتنی بر بینایی ماشینها، سیستمی طراحی خواهد شد کـه عـلاوه بـر در نظـر گـرفتن جنبـههـای مختلف تردد شهری، بتواند بهینهسازی الگوریتم کنترل ترافیک را نیزتضمین نماید. نتایج شبیهسازی بـر روی بانک تصاویر ترافیکی تقاطعهای موجود و مقایسه کاربرد این الگوریتم با سایر روشهای کلاسیک که در کنترل تقاطعهای ایزوله معمول میباشد، نشان دهنده میزان قابلیت این تکنیک میباشد.
در این پایان نامه پس از معرفی نظریه جریان کنترل ترافیک و همچنین معرفی متغیرهـای ترافیکـی و روابط حاکم بر آنها پرداخته وپروسه کنترل ترافیک از دیدگاه میکروسکوپیک و ماکروسـکوپیک و مـد لـسازی مناسب فرایندهای مختلف آماری موجود در این زمینه مورد بررسی قرار میگیرد. در بررسی پدیده ترافیـک دو دسته پارامترهای گسسته و پیوسته وجود دارند که هریک از آنهـا از توزیـعهـای احتمـالاتی مناسـب پیـروی میکنند. همچنین در این بخش برخی از روشهای مدلـسازی کلاسـیک پدیـده ترافیـک و نحـوه زمـان بنـدی چراغهای راهنمایی و اصول حاکم بر نحوه فازبندی در یک تقاطع ارائه میشود.
از آنجا که منطق فازی بهترین روش برای مدلسازی فرایندهایی است که با استدلالات انسانی سرو کـار دارد، استفاده از کنترل کننده فازی، نوعی کنترل ترافیک انعطاف پذیر را ایجاد میکند. از این رو در این پایـان نامه ضمن معرفی شبکههای عـصبی و بـه طـور خـاص شـبکه عـصبیRBF برخـی از روشـهای آموزشـی در شبکههای عصبی معرفی و شرایط معادل بودن عملکرد سیستمهای فـازی و شـبکههـای عـصبیRBF مـورد بررسی قرار میگیرد.
پس از آشنایی مختصر با سیستمهای نرو- فازی به ارائه الگوریتم پیشنهادی FHLA که برای نخستین بار جهت کنترل ترافیک تقاطع ایزوله استفاده میشود، پرداخته شده است. به این منظور مراحـل پیـادهسـازی تکنیک FCM برای مقداردهی اولیه مراکز و عرض نرونها و نحوه تعیین تعداد نرونهای لایه میانی با اسـتفاده از اندیسهای اعتباری خوشـهای بیـان شـده اسـت. همچنـین مـاتریس تقریبـی بـردار ضـرایب وزن تعیـین و بهینهسازی پارامترها و تعیین مقادیر دقیق آنها صورت میپذیرد.
از آنجا که قرار است اطلاعات لازم جهت کنترل از طریق پردازش تصاویر ویـدئویی صـورت پـذیرد، در بخشی نیز به مباحث موجود در پردازش تـصویر و شناسـایی و ردیـابی اجـسام متحـرک و بررسـی روشـهای استخراج اطلاعات آماری ترافیک از تصاویر ویدئویی پرداخته میشود.
در نهایت مدلسازی رفتار دینامیکی یک تقاطع ایزوله شهری، صورت گرفته و سـپس کنترلـر عـصبی-
فازی طراحی و به مدل شبیهسازی شده اعمال میگردد. همچنین یکی از روشهای شـمارش وسـایل نقلیـه در تصاویر ویدئویی انتخاب و برروی فیلمهای تهیه شده از تقاطع موردنظر پیاده میشود و نتایج حاصـل شـده بـا آمار واقعـی مقایـسه شـده انـد. همچنـین تـاثیر بـه کـارگیری کنتـرل کننـده عـصبی – فـازی بـا اسـتفاده
9
ازتکنیک FHLA و کنترل کلاسیک پیش زمانبندی شده، بر میزان سطح تاخیر و سـطح اشـباع ورودیهـای تقاطع بررسی شده است. کلیه برنامه های مدلسازی توسط برنامه نویسی در محیط نرم افزار MATLAB بوده و نتایج شبیهسازی قابلیتهای به کار گیری الگوریتم پیشنهادی را نشان میدهد.
10
فصل دوم
نظریه جریان ترافیک و اصول زمانبندی
چراغهای تقاطع
11
فصل دوم: نظریه جریان ترافیک و اصول زمانبندی چراغهای تقاطع
(1-2 مقدمه
تئوری ترافیک دانشی است که به منظور برقراری روابط تحلیلی پدیده ترافیـک و بـسط آنهـا اسـتفاده میشود. این فرآیند شامل تحلیل ریاضی و مدل سـازی، اسـتفاده از تکنیـکهـای مهندسـی کنتـرل سیـستم وشبیهسازی کامپیوتری میباشد. نظریه جریان ترافیک و بررسی مـدلهای جریـان ترافیـک پرداختـه و روابـط تحلیلی مربوط به پارامترهای مختلف که ممکن است از مدلهای احتمالاتی گسسته و یـا مـدلهای احتمـالاتی پیوسته تابعیت کنند، در ادامه مورد بحث قرار میگرند. به این ترتیب با شناخت متغیرهای مختلف ترافیکـی و آشنایی با نحوه اندازه گیری هریک از آنها، میتوان در تحلیل وضعیت ترافیکی یک تقاطع، پارامترهای مناسـب را انتخاب نمود. زیرا اندازه گیری بسیاری از شاخصههای تاثیر گذار بر جریان ترافیک ممکن با مـشکل مواجـه شود.
(2-2 روابط تحلیلی پدیده ترافیک
یکی از مدلهای اساسی جهت بررسی پدیده ترافیک مدل خودرو به دنبال هم می باشد که عبارت است از رابطهای ریاضی که حرکت یک وسیله نقلیه را به حرکت وسایل نقلیه دیگر که به دنبال آن میباشد ارتبـاط داده و با تعمیم آن میتوان به رابطهای که جریان کامل ترافیک را توضیح میدهد، رسید.یک نمونه از معـادلات
ریاضی مربوطه به صورت زیر میباشد:[3]
(1-2)Vn (t −T ) −Vn−1(t −T )dVn (t)AdtX n (t −T ) − X n−1(t −T )که در آن Vi سرعت خودروی i ام، Xi موقعیت خودروی i ام و T عقب مانـدگی یـا تـاخیر در عکـس العمـل میباشد. این رابطه نشان میدهد که شتاب خودروی n ام به وسیله اختلاف بین سرعت او و سـرعت خـودروی جلویی (n-1) و همچنین به ثابت A و به فاصله بین دو وسیله نقلیه بستگی دارد. هرچه فاصله بین دو وسـیله نقلیه کمتر باشد، این وابستگی بیشتر است. آزمایشات مناسب بودن این مدل توصیفی را نشان میدهند. مـدل خودرو به دنبال هم که در رابطه (1-1) نشان داده شده است، در مقیاس کوچک بوده و میتوان با کمی تغییـر از این معادله به رابطهای مناسب در مقیاس بزرگ دست یافت. برای نشان دادن این رابطه در مقیـاس بـزرگ، معادله (1-1) را برای شرایطی که فاصله همه وسایل نقلیه و سرعت آنها یکسان باشد، در نظر گرفته می شود.
با توجه به اینکه v سرعت، v∆ اختلاف سرعت و x ∆ فاصله است، آنگاه:
(2-2)∆vAdv∆xdtبا تغییر دیفرانسیلی در سرعت رابطه زیر برقرار میباشد.:(3-2)d (∆x)dv d A∆x
12
و نهایتا برای هرزوج اطلاعات معلوم (v0,x0) میتوان نوشت(4-2)d (∆x)v∫dv A ∆∫x∆xv0∆x0k0ALn∆xALnvv −k∆x00
که در این رابطه k عبارت است از چگالی و k=1/∆x که با نشان دادن تردد به صورت q و با توجه به اینکـه در چگالی تراکم kj (حالت اشباع) v=0 میباشد، ازمعادله (4-1) میتوان نوشت :
(5-2)k jq q AkLnk
باید توجه داشت که عموما فـرض بـر آن اسـت کـه چگـالی جریـان (k) یـک متغیـر مـستقل اساسـی بـوده وپارامترهایی همچون سرعت (v)و تردد (q) به آن وابسته هستند.

(3-2 معرفی پارامترهای ترافیکی
در این بخش به طور مختصر به معرفی برخی پارامترهایی که در تئوری جریان ترافیـک نقـش مـوثری دارند بررسی میشوند. به طور کلی روابط میان پارامترهای مختلف در پدیده ترافیک را میتوان به صورت جدول
1-2 توصیف نمود:
جدول (1-2) معرفی پارامترهای حاکم بر پدیده ترافیک
علامتنامتوضیحواحدqحجم (تردد)تعداد وسیله نقلیه که در واحد زمانتعدادوسیله نقلیه براز یک نقطه میگذرد.ساعتkتراکم(فشردگی)تعداد وسیله نقلیه که واحد طول یک راهتعدادوسیله نقلیه بررا به طور همزمان اشغال میکنند.کیلومترsفاصله مکانیمسافت بین دو وسیله نقلیه متوالیمتر یا کیلومترhفاصله زمانیفاصله زمانی بین عبور دو وسیلهثانیهنقلیه از یک مکانmواحد زمان سفرزمانی که یک وسیله نقلیه واحددقیقه بر کیلومترطول را طی میکندuسرعتمشتق مسافت نسبت به زمانکیلومتر بر ساعتu sمیانگین مکانی سرعتمیانگین سرعت وسایل نقلیه گذرندهکیلومتر بر ساعتاز یک مسیر در یک لحظه معین

در این سایت فقط تکه هایی از این مطلب با شماره بندی انتهای صفحه درج می شود که ممکن است هنگام انتقال از فایل ورد به داخل سایت کلمات به هم بریزد یا شکل ها درج نشود

شما می توانید تکه های دیگری از این مطلب را با جستجو در همین سایت بخوانید

ولی برای دانلود فایل اصلی با فرمت ورد حاوی تمامی قسمت ها با منابع کامل

اینجا کلیک کنید

13
روابط فوق قابل اثبات بوده و رابطه آنها را میتوان به صورت ذیر بیان نمود:
حجم ترافیک: میانگین مکانی سرعت × تراکم
(6-2)
میانگین مکانی سرعت = حجم × فاصله مکانی
(7-2)
تراکم: حجم × واحد زمان سفر
(8-2)
فاصله مکانی = میانگین مکانی سرعت × فاصله زمانی
(9-2)
فاصله زمانی = واحد زمان سفر × فاصله مکانی
(10-2)
واحد زمان سفر= تراکم × فاصله زمانی
(11-2)
q q us k
us qs kq
k k qm q
us
s s ush h uqs
h h ms 1q
m m kh 1
us
با استفاده از روابط فوق و ترکیب آنها میتوان سیستم ترافیک را به طور کامل مورد تجزیه و تحلیل قرار داد. همچنین واضح است که حجم و تراکم مناسبترین زوج متغیرها بـرای توصـیف جریـان ترافیـک و نتـایج نظری آن هستند. همچنین این تعاریف نشان میدهد که به هنگام تراکم صفر، حجم نیز باید صفر باشد و برای تراکم حداکثر یعنی وقتی وسایل نقلیه سپر به سپر قرار میگیرند نیز حجم صفر است. معمولا پیش از رسـیدن تراکم به یک مقدار ماکزیمم، حجم کاهش مییابد. شکل 1-2 دیاگرام اساسی ترافیک نامیده میشود که رابطه میان حجم و تراکم را نشان میدهد.
14
شکل((1-2 منحنی حجم-ترافیک به صورت تابعی از تراکم
(4-2 مدلهای احتمالاتی
استفاده از مدلهای احتمالاتی هم به صورت ساده و هم به صورت خاص (کـاربرد تئـوری صـف) بخـش مهمی از نظریه جریان ترافیک میباشد. در این بخش به طور مختصر به توصیف احتمالاتی برخی پارامترهـای موثر بر جریان ترافیک و رابطه میان آنها پرداخته میشود.
(1-4-2 مدل احتمالی رابطه چگالی و تردد
برای بررسی و به دست آوردن عناصری مانند رابطه چگالی و تردد، یکی از روشها آن اسـت کـه رابطـه جبری q=q(k) را برای تردد محاسبه شود، به طوری که چگالی k رابه عنوان یک متغیر تـصادفی بـا میـانگین k و واریانس σ 2 در نظر گرفت. با معلوم بودن این مقادیر، مقدار میانگین جریان، مq ، و سـایر معیـارهـای احتمالاتی نیز معین میشود. روش بهتر این است که جریان q طوری در نظر گرفته شود که دارای یک مولفـه وابسته به چگالی و یک مولفه تصادفی باشد که این مولفه تصادفی به مولفه قبلی اضافه گردد.
(12-2)q q q fix (k) qrandomفرض کنید که (q=Ak(k0-k) و(13-2)qqqqE(q))))E[[Ak(k00−−k)])))Ak00E(k))−−AE(kk22)σx2 E(x2 ) −[E(x)]2qqqqAkA00kk−−A(σk22222k22)یا به عبارتی دیگر(14-2)qqqqqq((kk))−−Aσk2
15
که در این رابطه، ( q((k از جایگذاری k در رابطه تعریف شده ( q AK (q − q0 به دست آمده است.به ازای یک KKK خاص، نوسانات موجود در چگالی ترافیک به حداقل و نرخ تردد به حـداکثر مقـدار خـود میرسد.
شکل (2-2) بررسی مدل احتمالی ترافیک
(2-4-2 مدلهای احتمالی گسسته
برخی از مدلهای احتمالی که در توصیف پارامترهای گسسته به کـار میـرود، بـه طـور مختـصر بـه صورت زیر میباشد:
-1 توزیع دو جملهای: از این مدل احتمالی در توصیف حرکات گـردش بـه چـپ و راسـت در یـک بازوی تقاطع و فرآیند ورود وسایل نقلیه به یک بازو در جریان ترافیکی متـراکم کـه نـسبت میـانگین بـه واریانس تعداد وسایل نقلیه از یک بزرگتر باشد، استفاده میشود.
-2 توزیع دو جملهای منفی : این توزیع در توصیف پدیـدههـای خـاص مثـل عبـور وسـایل نقلیـه سنگین مانند کامیون در جریان ترافیک استفاده میگردد، به این ترتیب که عبور یک وسیله نقلیه سنگین به عنوان پیروزی و عبور بقیه وسایل نقلیه به عنوان شکست در نظر گرفتـه میـشود. ضـمن آنکـه از ایـن توزیع، زمانی استفاده میشود که نسبت میانگین به واریانس وسایل نقلیه از یک کمتر باشد.
-3 توزیع پواسن: از توزیع پواسن برای توصیف رفتار وقـایعی کـه ذاتـا تـصادفی هـستند، اسـتفاده میشود. از نظر تاریخی، این توزیع، اولین توزیع به کار رفته برای آنالیز جریان وسایل نقلیه میباشد. از ایـن توزیع برای شمارش پدیدهها استفاده میشود و احتمال ورود وسایل نقلیه در ضـمن یـک پریـود زمـانی را مشخص میکند. همچنین تنها پارامتری که باید از روی اطلاعات آماری و تحلیل آنها به دسـت آیـد نـرخ ورود وسایل نقلیه به خیابان مورد نظر میباشد. همچنـین از ایـن توزیـع در زمـانی کـه وضـعیت ترافیـک معمولی بوده و نسبت میانگین به واریانس در حدود یک باشد استفاده میشود.
-4 توزیع هندسی : این توزیع که احتمال تعداد آزمایش برای رسـیدن بـه اولـین پیـروزی را دارد، نقش عمدهای در مدلسازی فرآیند صفبندی ترافیکی را ایفا میکند. پارامترهایی کـه در ایـن توزیـع بایـد مشخص باشند، نرخ ورود ونرخ ترک صف بوده و زمان انتظار برای برای اولین موفقیت (خروج) و یا تعـداد وسایل نقلیه منتظر در صف با این توزیع، تعیین میشوند.
16
(3-4-2 مدلهای احتمالی پیوسته
برای توصیف برخی پارامترهایی که ماهیت پیوسته دارند نیـز معمـولا از توزیـعهـای زیـر اسـتفاده میشود:
-1توزیع نرمال: این توزیع برای توصیف سرعتهای نقطهای در محاسبات مهندسی ترافیک کاربرد دارد. -2توزیع نمایی(نمایی منفی): کاربرد این توزیع در مدلسازی شکاف زمانی بین ورودیهای متوالی در یـک پروسه میباشد. در به کارگیری این تابع توزیع، نرخ متوسط جریان ترافیک وسـایل نقلیـه در واحـد زمـان باید مشخص باشد.
(4-4-2 مدل احتمالی تئوری صف
از جمله پارامترهای مورد توجه در مدلسازی صف عبارتنـد از: تعـداد واحـدهـای موجـود در صـف،
احتمال عدم وجود واحدی در صف، زمان متوسط انتظار هر واحد و غیره. برای پیشگویی مشخـصات یـک سیستم صف، لازم است که مشخصات الگوی ورودی مانند متوسط نرخ ورود، توزیع آماری شـکاف زمـانی ورود وسایل نقلیه و همچنین مشخصات سیستم سرویس دهنده شامل نرخ متوسط سرویس، توزیع آماری زمان سرویس وتعداد کانالهای سرویس دهنده، مشخص باشند.
با فرض نرخ ورود λ،شکاف متوسط ورود برابر 1/ λ خواهد بود. همچنین اگـر نـرخ سـرویس را بـا
نمایش دهیم، پس متوسط زمان سرویس برابر با 1/ خواهد بود. نسبت P λ / (شـدت ترافیـک)
برای پایداری صف باید از یک کمتر باشد.
برای مدلسازی صف تک کاناله از روابط زیر استفاده میشود:
-1تعداد واحدهای موجود در سیستم: این پارامتر شامل تعداد واحـدهـای منتظـر در صـف بعـلاوه تعـداد واحدهای در حال سرویس میباشد
-2احتمال خالی بودن سیستم:
(15-2)p(0) 1 − p-3احتمال وجود n واحد در سیستم برابر است با(16-2)p(n) pn(0)-4طول متوسط صف: تعداد متوسط واحد منتظر در صف:(17-2)E(m) p2 /(1 − p) λ2 / /(/ − λ)-5تعداد متوسط واحد موجود در صف:E(n) p /(1 − p) λ /(/ − λ)(18-2)-6زمان متوسط انتظار قبل از سرویس دهی:(19-2)E(v) 1/(/ − λ)
17
-7زمان متوسط صرف شده در سیستم:
(20-2)1/ / /(/ − λ)E(w)
(5-2 کنترل چراغ راهنمایی
زمان سفر و مشخصههای تاخیر میتواند به عنوان معیار مناسبی بـرای کـارایی جریـان ترافیـک در تقاطعهای چراغ دار مورد استفاده قرار گیرد. به طورکلی زمان سفر و زمان تاخیر با یکدیگر رابطـه عکـس دارند. با مطالعات مربوط به میزان تاخیر میتوان مقدار، علت، موقعیت، مدت و فراوانی تاخیرها و همچنین سرعتهای کلی سفر وحرکت را تعیین کرد.
تاخیر عبارت است از زمان از دست رفتهای که باعث کند شدن جریان ترافیـک میگـردد. از جملـه عوامل موثر بر تاخیر تقاطع میتواند شامل مواردی همچون عوامل فیزیکی مانند تعداد خطوط عبور، شیب ها، مسیر دهی ترافیک و ایستگاههای حمل ونقل ترافیک،عوامـل ترافیکـی ماننـد حجـم ترافیـک در هـر رویکرد تقاطع، حرکات گردشی، عابران پیاده وطبقهبندی وسایل نقلیه و کنترل کنندههای ترافیکی ماننـد زمانبندی چراغ راهنمایی، تابلوهای ایست و احتیاط، باشد.
برای به دست آوردن روشی برای غیر اشباعسازی تقاطع باتوزیع ورودی پواسـن، احتمـال اینکـه x
وسیله نقلیه در طی یک چرخه((c وارد تقاطع شوند برابر است با :
e−λcc(λc)x
p(x) (21-2) x
که در این رابطه λ برابر است با متوسط نرخ ورود وسایل نقلیه در طی یک دوره مشخص برای حالت غیـر اشباع تقاطع.
مثلا اگر لازم باشد اتومبیل هایی که در چرخهای بـه انـدازه c وارد میـشود در طـی مـدت g سـبز موجود، در حداقل 95 درصد مواقع قادر به عبور باشند، تعداد وسایل نقلیهای که باید وارد تقاطع شـوند از رابطه زیر قابل محاسبه میباشد:
x(λc)−λceN(22-2)≥ 0.95Pr (x ≤ N ) ∑xxx0
که در این رابطه pr(x≤n) نشان دهنده احتمال آن است که x وسـیله نقلیـه کمتـر یـا مـساوی بـا N وارد تقاطع شوند که N کوچکترین عددی است که در این رابطه صدق میکند.
یکی دیگر از پارامترهای موثر بر جریان ترافیک، زمان سفر متوسط می باشـد.زمـان متوسـط سـفر برای برای یک جریان ترافیک یک طرفه توسط رابطه زیر تعریف میشود:
(23-2)60(On − Pn )Tn Tn −Vnکه در آن Tn زمان سفر متوسط برای تمام ترافیک در جهت شمالی n) به معنای جهت حرکت بـه سـمت شمال مسیر میباشد.)
18
و مقدار ( (On − Pn نشان دهنده تصحیح این مساله است که ممکن است وسیله نقلیـه مـورد بررسـی بـا سرعت متوسط در مسیر حرکت نکند.
پارامتر دیگر سرعت متوسط مکانی وی باشد که برای جریان یکطرفه، با رابطه زیر تعیین میشود:
(24-2)60dSn Tnکه در آن Sn سرعت متوسط مکانی در جهت شمال و d طول مسیر مورد آزمایش میباشد.
(6-2 تحلیل عملکرد تقاطع
مراحل تحلیل عملکرد تقاطع ها، اعم از چراغدار، بدون چراغ و میدان شامل تهیه اطلاعـات ورودی، تحلیل ظرفیت و تعیین سطح خدمات میباشد. اطلاعات ورودی شامل اطلاعات مـورد نیـاز بـرای تحلیـل عملکرد تقاطع مانند مشخـصات هندسـی، ترافیکـی، کنترلـی و محیطـی تقـاطع اسـت. تحلیـل عملکـرد تقاطعهای چراغدار به صورت سیستماتی ک مطابق شکل3-2 صورت میگیرد:[1]
شکل (3-2) فرآیند تحلیل تقاطعهای چراغدار
(1-6-2 اصطلاحات رایج در تقاطعهای چراغدار
پیش از هرچیز، تعاریف مفاهیم و اصطلاحات مرتبط با تقاطعهای چراغ دار ارائه میگردد:[1] -1 چرخه: عبارت است از یک دوره کامل از حالتهای چراغ راهنمایی.
-2 طول چرخه: عبارت است از زمان لازم برای طی شدن یک چرخه چراغ راهنمایی که معمولا بـر حسب ثانیه بیان میشود.
-3 فاز(دوره): بخشی از یک چرخه چراغ راهنمایی است که به عبور یک یا چنـد حرکـت ترافیکـی همزمان اختصاص یافته است..
-4 فرجه: مدت زمانی است که در طول آن، وضعیت کلیه چراغهای تقاطع ثابت است.
-5 فرجه تمام قرمز: مدت زمانی است که به منظور ایمنی و تسهیل تخلیه تقاطع، در همه جهت ها چراغ قرمز میشود.
19
-6 فرجه زرد: مدت زمانی است که در میان علائـم سـبز و قرمـز چـراغ راهنمـایی در نظـر گرفتـه میشود تا وسایل نقلیهای که به علت سرعت زیاد قادر به توقف نیستند، بتوانند بـا ایمنـی از تقـاطع عبـور کنند.
-7 زمان تخلیه: مدت زمانی است که در پایان زمان سبز یک حرکت ترافیکی تا شروع زمـان سـبز حرکت بعدی در نظر گرفته میشود و برابر است با فرجه زرد بعلاوه فرجه تمام قرمز.
-8 زمان سبز موثر: بخشی از یک فاز میباشد که به طور موثر توسط حرکت مربوطه مورد اسـتفاده قرار میگیرد و برابر است با زمان سبز بعلاوه زمان تخلیه منهای زمان هدر رفته برای آن فاز.
-9 نسبت سبز: عبارت است از نسبت زمان سبز موثر یک فاز به طول چرخه. -10 ورودی(رویکرد): عبارت است از هریک از مسیرهای منتهی به تقاطع.
-11 گردش حمایت شده: حرکت گردشی که دریک فـاز جداگانـه و بـدون برخـورد بـا جریانهـای ترافیکی مزاحم مانند ترافیک روبرو یا عابرین پیاده انجام میشود.